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1. Introduction

Leptogenesis [1] is a simple mechanism to generate baryon number asymmetry of the Uni-

verse. The idea is that a lepton asymmetry produced at a high temperature is converted to

the baryon asymmetry through the sphaleron interactions [2] which conserve B−L number

but break B + L number. A simplest version of the leptogenesis is based on the seesaw

mechanism [3] which can also explain the smallness of the neutrino masses by introducing

heavy right-handed neutrinos (RHN) to the standard model. In the seesaw models, the

CP-violating and out-of-equilibrium decay of the RHN can produce the lepton asymmetry.

The seesaw mechanism is also easy to be implemented in supersymmetric and/or grand

unified theories (GUTs) which are most attractive candidates for the physics beyond the

standard model. In such a class of model, the successful leptogenesis is considered as a

mechanism to generate the baryon asymmetry of the Universe. However, in many models

especially in GUT models, the mass (M1) of the lightest RHN (N1) is too small to generate

the observed baryon asymmetry by the N1 decay and the asymmetry should be produced

through another mechanism.

Recently it was pointed out that flavor effects give significant contributions to the

leptogenesis [4 – 10]. One of the interesting phenomena in the flavored leptogenesis is that

the primordial lepton asymmetry generated by the decay of the second lightest RHN (N2),

of the inflaton or so can remain against the washout by the lightest one [6, 9]. This is an

interesting possibility to give enough baryon asymmetry even when the mass of the lightest

RHN is too small. In such a scenario, the study of the washout effect by the lightest RHN

is very important.

In this paper, we study the detail of this flavored washout effect due to the lightest RHN

and we point that there is a novel parameter region ((2b) in section 2.3) where an effect
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that is negligible in most cases plays an important role. This effect is due to off-diagonal

elements of the so-called A-matrix, and thus unique in the flavored leptogenesis. Most

recently, importance of the effect of the off-diagonal elements was first studied numerically

in the context that N1 decay generates the lepton asymmetry [10], while these effects

were incorporated in the numerical calculations [8]. The authors concluded that the final

(total) asymmetry was corrected only by a few percent due to the inclusion of the off-

diagonal entries. Here, we adapt the analysis on the washout effect to the case where the

asymmetry produced by the N2 decay dominates the baryon asymmetry of the Universe,

and show that a sizable lepton asymmetry can remain against the washout process in a

different way from those studied in refs. [6, 9] (which correspond to (2a) and (3) with

M1 ≫ 109GeV, respectively). Interestingly, in this case, the final (total) asymmetry can

be enhanced by orders of magnitude compared to the result of neglecting the off-diagonal

elements, in contrast to the case of the N1 decay dominance [10].

In the section 2, we investigate the washout effect by the N1 decay, assuming that there

is primordial lepton asymmetry before the decay becomes relevant. In particular we study

the behaviour of the solutions by perturbation with respect to the off-diagonal elements

of A-matrix, given that these elements are small. In the section 3, we will show examples

that the primordial asymmetry is generated by the decay of the second lightest RHN. The

section 4 is devoted to summary and discussion.

2. Flavor dependence of the Washout effect

2.1 The seesaw mechanism and the leptogenesis

In the seesaw mechanism, RHN are introduced to the standard model,

L = LSM +
∑

f,i

Yfih̄l̄fNi −
∑

i

Mi

2
N̄iN

c
i + h.c. (i = 1, 2, 3 and f = e, µ, τ) , (2.1)

with Ni, lf , and h being RHN, lepton doublets, and Higgs doublet respectively. Here we

take the basis where the Yukawa matrix for charged leptons and the mass matrix of RHN

are diagonalized. Integrating out the heavy RHN and giving the VEV to Higgs, one can

obtain the neutrino masses, mi, and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing

matrix [11], U , as

U∗diag(m1,m2,m3)U
† = v2Y diag(M−1

1 ,M−1
2 ,M−1

3 )Y T . (2.2)

where v = 174GeV is the Higgs VEV. Supposing the reheating temperature after the

inflation is enough high, the RHN are produced through the interaction with the doublet

leptons and the Higgs fields. When the temperature decreases down to the mass of RHN,

the production becomes inefficient and RHN decay away. This out-of-equilibrium decay

of the RHN generates B − L asymmetry which is proportional to the CP violation in the

decay, ǫ, defined as

ǫf
i =

ΓNi→lfh − ΓNi→l̄f h̄

∑

f

(

ΓNi→lfh + ΓNi→l̄f h̄

) . (2.3)
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This asymmetry is converted to the baryon asymmetry through the electroweak sphaleron [2]

processes.

2.2 Boltzmann equation

In order to evaluate the baryon asymmetry of the Universe, the Boltzmann equation is

used. In this analysis, for simplicity, we omit the scattering effects which are considered

to be subdominant. The decays and inverse decays, N1 ↔ lfh, l̄f h̄, are considered with

rate γf
D. With this simplification, the evolution of the asymmetry of ∆f = B/3−Lf after

the decoupling of the second lightest RHN is described by the following set of Boltzmann

equations [8]:

dYN1

dz
= − z

sH(M1)
γD

(

YN1

Y eq
N1

− 1

)

, (2.4)

dy∆f

dz
= − z

sH(M1)

[

γDǫf
1

(

YN1

Y eq
N1

− 1

)

+
γf

D

2

(

ylf

Y eq
lf

+
yh

Y eq
h

)]

, (2.5)

where z = M1/T and γD =
∑

f γf
D. The parameters YX and Y eq

X indicate the number

density of the particle X divided by the entropy density s = 2π2geff
∗ T 3/45 and its value in

equilibrium respectively, and yX = YX − YX̄ . The parameter geff
∗ ∼ geff

SM = 106.75 is the

total effective number of the degrees of freedom (DOF) at the temperature around M1.

With these definitions, we have

Y eq
N1

=
3

4

45ζ(3)gN1

4π4geff
∗

z2K2(z),
Y eq

N1

Y eq
massless

=
1

2

gN1

gmassless
z2K2(z)

{

1 for fermion

3/4 for boson
(2.6)

where ζ(x) is the Riemann’s zeta function and Kν(x) is the modified Bessel function.

Here, gX is (not effective) number of DOF of the particle X, for example glf = gl̄f
= 2 and

gN1
= 2.

After neglecting the finite temperature effects such as the thermal masses and running

of the couplings (for these effects, see ref. [14]) for simplicity, one can obtain γD and the

Hubble parameter H(z) as

γD = sY eq
N1

K1(z)

K2(z)
ΓD, H(T ) =

√

8π3geff
∗

90

T 2

Mpl

, (2.7)

where ΓD = (Y †Y )11M1/(8π) is the total decay width of N1 and Mpl = 1.22 × 1019GeV is

the Planck scale. Now, let us define the “washout mass parameter” m̃f
i and “equilibrium

neutrino mass parameter” m∗ as

m̃f
i =

|Yfi|2 v2

Mi

, m∗ =
H(M1)m̃1

ΓD

=

√

8π3geff
∗

90

8πv2

Mpl

= 1.07meV, (2.8)

where m̃i =
∑

f m̃f
i . The partial decay width to a flavor f is written as Γf

D = m̃f
1M2

1 /(8πv2)

and the total decay width is given by the sum of them ΓD =
∑

Γf
D. Eventually, the
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Boltzmann equations are written as

dYN1

dz
= −z

K1(z)

K2(z)

m̃1

m∗

(

YN1
− Y eq

N1

)

, (2.9)

dy∆f

dz
= −z

K1(z)

K2(z)

[

ǫf
1

m̃1

m∗

(

YN1
− Y eq

N1

)

+
1

4

m̃f
1

m∗
z2K2(z)

(

2
ylf

glf

+
3

2

yh

gh

)]

. (2.10)

The coefficient of yh is different from that in ref. [8] by a factor 3/4 which comes from the

relative factor of the number density in the equilibrium of fermion/boson (2.6). Notice that,

however, in the derivation of the Boltzmann equations (2.4) and (2.5), an approximation

f = 1/ (exp ((E − µ)/T ) ± 1) ∼ exp (−(E − µ)/T ) is made. Within this approximation,

the relative factor 3/4 (and the factor 2 in eq. (2.15)) disappears. In fact the right hand

side of eq. (2.5) is originally written in terms of not yX/Y eq
X but the chemical potentials

of the particle X, µX . In literatures, these chemical potentials are replaced as eq. (2.5)

using the relation between µX and yX/Y eq
X with the approximation. If one would not

use this replacement, a factor 1/2 appears instead of 3/4. This difference of the factor

does not affect the results a lot in many cases and the term of yh itself is often neglected.

In our analysis, the contribution can affect the result significantly. In the following we

take basically the factor 3/4 for illustration. It is straightforward to make analyses with a

different factor.

An important point is that y∆f
is invariant under the standard evolution of the

Universe after N1 is decoupled and related to the present baryon asymmetry as yB =

12/37 ×
∑

y∆f
[15]1 at the weak scale due to the electroweak sphaleron process. Thus,

we define “baryon asymmetry” by multiplying the factor 12/37 on y∆f
even at a higher

temperature. Because this value is proportional to the present baryon to photon ratio

as ηB = geff
0 π4/(45ζ(3)) × yB = 7.04yB successful leptogenesis scenario should predict

the “baryon asymmetry” yobs
B = 0.87 ± 0.03 × 10−10 which comes from the observable

ηobs
B = 6.1 ± 0.2 × 10−10 [17].

As mentioned in the introduction, in some models, the CP violation ǫf
1 is too small to

produce enough lepton asymmetry. In this case we can neglect the source term. Then, the

evolution of y∆f
is controlled by one equation as

dy∆f

dz
= −1

4
z3K1(z)

m̃f
1

m∗

(

2
ylf

glf

+
3

2

yh

gh

)

(2.11)

Note that we assume that the asymmetries of the lepton doublet, ylf , and of the Higgs

fields, yh, are much smaller than 1 because it is proportional to the B − L asymmetry

as shown below, and thus neglect the higher terms. These relations are forced by the

fast (spectator) processes, such as the sphaleron process, and depend on the temperature.

For example at a high temperature, only the interactions mediated by the gauge and the

top Yukawa coupling are in the thermal equilibrium, while at a lower temperature weaker

interactions come in it. For instance, let us concentrate on the range of the temperature

1The factor 12/37 can be somewhat different, for instance 28/79 [16], depending on the timing of the

freeze out of the electroweak sphaleron, but in any case, the value is approximately equal to 1/3.
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where the interactions mediated by all the second and third generational Yukawa couplings

are in the equilibrium but the first generational ones are not. This range is likely the one

in which we are interested, namely T ∼ M1 < 109GeV. In this range, the weak sphaleron

and the QCD sphaleron [18] are considered to occur fast enough.

These fast interactions make the following relations hold among the chemical poten-

tials:
µqi

− µuj
+ µh = 0, i = 1, 2, 3 (due to the CKM mixing)

µqi
− µdj

− µh = 0, j = 2, 3

µlj − µej
− µh = 0,

∑

i (3µqi
+ µli) = 0, EW sphaleron

∑

i (2µqi
− µui

− µdi
) = 0, QCD sphaleron.

In addition to these relations, we impose the charge neutrality of the Universe and assume

the vanishing asymmetries for the right handed leptons (and quarks if the QCD sphaleron

is not considered) of the first generation:
∑

i

(

µqi
+ 2µui

− µdi
− µli − µej

)

+ 2µh = 0, (2.12)

µe1
= 0, (2.13)

µu1
= µd1

(= 0 if no QCD sphaleron) (2.14)

Notice that in the eq. (2.12), the factor 2 in front of µh comes from the relative factor in the

relation between the asymmetry density and the chemical potential for massless particles:

yX =
gXµX

3s
T 2

{

1/2 for fermion

1 for boson
. (2.15)

Taking care of this factor 2, we get similar relations among the asymmetries by replac-

ing µfermion → yfermion/gfermion, µh → 2yh/gh and
∑

i

(

1
3 × 3 × (2µqi

+ µui
+ µdi

)
)

/3 −
(

2µlf + µef

)

→ y∆f
. By solving these relations, we find the expression of ylf /glf and

yh/gh in terms of y∆i
as

ylf

glf

=
∑

f ′

Clff ′y∆f ′
,

3

4

yh

gh

=
∑

f ′

3

4
Chf ′y∆f ′

, (2.16)

with

Cl =







−109/253 25/506 25/506

29/1012 −493/1518 13/1518

29/1012 13/1518 −493/1518






, Ch =







−53/506

−37/253

−37/253






(2.17)

if we do not consider the QCD sphaleron and with

Cl =







−151/358 10/179 10/179

25/716 −172/537 7/537

25/716 7/537 −172/537






, Ch =







−37/358

−26/179

−26/179






(2.18)

if we take into account it. In the following, we examine only the latter case because there

are no qualitative difference.
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Figure 1: The new variable z′ as a function of z.

From these expressions, we have the following Boltzmann equation:

dy∆f

dz
= −

∑

f ′

z3

4
K1(z)

m̃f
1

m∗
Aff ′y∆f ′

, (2.19)

with

Aff ′ =







715/716 19/179 19/179

61/716 461/537 103/537

61/716 103/537 461/527






=







1.00 0.11 0.11

0.085 0.86 0.19

0.085 0.19 0.86






. (2.20)

In order to analyse this equation, it is convenient to change the variable from z to z′ that

satisfy dz′/dz = z3K1(z)/4 so that

∂y∆f

∂z′
= −

∑

f ′

m̃f
1

m∗
Aff ′y∆f ′

. (2.21)

The range of z′ is from z′(z = 0) = 0 to z′∞ = z′(z = ∞) = 3π/8 = 1.18. The relation

between them is shown in the figure 1.

This figure shows the washout occurs mostly in the temperature range M1/10 . T .

3M1.

For comparison, the Boltzmann equation for the usual one-flavor approximation, which

is in reality valid only when the temperature is high enough that even the processes medi-

ated by the tau Yukawa coupling are out-of-equilibrium, is given as2

∂y∆

∂z′
= −m̃1

m∗
y∆, (2.22)

where y∆ =
∑

y∆f
and m̃1 =

∑

m̃f
1 .

2Here we neglect the Higgs contribution in order to compare our analysis with those in literatures,

though it is considered in the next section.
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2.3 Solutions

Roughly speaking, the matrix A is close to a diagonal one. And thus, we can find an

approximate solution by a perturbation with respect to rather small off-diagonal elements.

Namely,

y∆f
= y

(0)
∆f

+ y
(1)
∆f

ε + O(ε2) , (2.23)

setting Aff ′ = εÃff ′ for f 6= f ′ with ε ≪ 1 and Ãff ′ = O(1).

Neglecting the off-diagonal elements, each initial asymmetry y0
∆f

is exponentially

washed out. The evolution of the asymmetry is given by

y
(0)
∆f

(z′) = exp

(

−m̃f
1

m∗
Affz′

)

y0
∆f

. (2.24)

In many cases, the next leading order (NLO) gives only small contributions to total asym-

metry (see (1) and (2a) in figure 2 ). If y
(0)
∆f

is strongly suppressed as in the case of (2b) in

figure 2, NLO contribution becomes significant.

When the off-diagonal elements are switched on, the asymmetry follows

∂y
(1)
∆f

ε

∂z′
= −m̃f

1

m∗
Affy

(1)
∆f

ε −
∑

f ′ 6=f

m̃f
1

m∗
Aff ′y

(0)
∆f ′

. (2.25)

Inserting the leading order solution eq. (2.24), we find

y
(1)
∆f

(z′)ε =
∑

f ′ 6=f

m̃
f
1

m∗

Aff ′

m̃
f ′

1

m∗

Af ′f ′− m̃
f
1

m∗

Aff

(

exp

(

−m̃f ′

1

m∗
Af ′f ′z′

)

−exp

(

−m̃f
1

m∗
Affz′

))

y0
∆f ′

. (2.26)

This expression shows that even if the initial asymmetry of a certain flavor is zero, the

asymmetry is generated from those of the others although it is suppressed by a small off-

diagonal element of A-matrix. For most cases, this order already gives good approximation

for the final value of the total asymmetry. In fact this perturbation y
(0)
∆f

+ y
(1)
∆f

ε coincides

with the numerical solution of the Boltzmann equation, eq. (2.21) within 10% (see the

dashed line and solid line in figure 2, respectively).

(1) m̃f
1 . m∗ (f = e, µ, τ)

In this case, one may expect the washout effect is small and thus the flavor effect can

not play an important role. However, even in this case, the final total asymmetry

can be 2 times larger than the one-flavor approximation (See (1) in figure 2).

(2) m̃f1

1 . m∗ and m̃f2

1 ¶ m∗ (f1 6= f2)

In this case, the summation m̃1 =
∑

m̃f
1 is dominated by m̃f2

1 and is larger than m∗.

It is called strong washout region. As shown below, however, if we take account of

the flavor effect the washout effect is drastically changed. The effect depends strongly

on the flavor structure of the initial asymmetry.

In the following, let us take m̃e
1 . m∗ µ m̃a

1 (a = µ, τ) as a representative example for

clarity. It is straightforward to apply this analysis to the other cases. We consider

two typical sets of the initial asymmetries:

– 7 –
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(2a) y0
∆e

& y0
∆a

In this case, the washout effect of y∆e is controlled by m̃e
1 which is much smaller

than m̃1, while y∆a are generated due to the small off-diagonal elements of Aae,

with the opposite sign. Because of the large m̃a
1, these generated y∆a are washed

out strongly and can not become comparable with y∆e . Thus, in terms of the

perturbation, the leading order approximation is sufficient.

Note that even in this case, the washout factor y∆(z′∞)/y0
∆ ∼ exp (−m̃e

1Aee/m∗)

is quite different (much larger) than the one-flavor approximation,

exp (−m̃1/m∗) (See (2a) in figure 2). This is the case even when m̃e
1 is not

so much smaller than the others, due to the exponential washout factor [6].

(2b) y0
∆e

≪ y0
∆µ

and/or y∆τ

The asymmetry y∆a decreases rapidly, while the asymmetry y∆e produced due

to the off-diagonal elements is washed out much more slowly. This means that

at some point y∆e becomes dominant. Once it becomes dominant, the following

evolution is similar to the one in the case (2a). Thus, the washout factor is

controlled basically by the small m̃e
1 rather than m̃1 or m̃a

1 (See (2b) in figure 2).

Interestingly in this case, the sign of the total B−L asymmetry changes through

the washout.

In the case of (2b) in figure 2, the difference between the total B−L asymmetry

with and without off-diagonal entries of A-matrix is found as large as four orders

of magnitude. It means that the effect of off-diagonal elements of A-matrix gives

really significant contributions.

Note that the approximation at the NLO is quite bad for y∆a because the sec-

ondary conversion from y∆e , which is generated by the NNLO effect, is impor-

tant. Nevertheless, the approximation for the total asymmetry is rather good

because these are small as in the case (2a).

(3) m̃f
1 ¶ m∗ (f = e, µ, τ)

In this case, all the asymmetries in each flavors are strongly washed out. Thus, it is

hard that the observed value remains after the washout, as far as M1 < 109GeV.3

From the above considerations, it is clear that the washout factor is basically controlled

by the smallest washout mass parameter. This is in great contrast to the non-flavored case,

where the factor is controlled basically by the largest washout mass parameter. Interest-

ingly, this is also true even for the case that the initial asymmetry of the flavor with smallest

washout mass parameter is tiny (the case (2b)). For this case, the effect of the off-diagonal

elements, which is usually negligible, is crucial.

3If we consider models with M1 ≫ 109GeV where the muon Yukawa interaction is out-of-equilibrium, the

asymmetry along with the direction in the flavor space that is orthogonal both to the direction determined

by N1 Yukawa coupling and τ direction is free from the washout, even in this case [9].
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|y
∆|

z’/z’∞
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10-4
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

|y
∆|

z’/z∞’

(2b) {m̃e
1, m̃

µ
1 , m̃τ

1} = {2, 15, 20}meV , {y0
∆e

, y0
∆µ

, y0
∆τ

} = {0, 0.5, 0.5}

Figure 2: The evolutions of the B/3 − Lf asymmetries. The horizontal line is z′/z′
∞

, and the

vertical line is |y∆|. In the left figures, solid, broken, dotted and dot-dashed lines show the total

B − L asymmetry calculated by solving the full Boltzmann equation (2.21), by the approximation

formula y
(0)
∆f

+ y
(1)
∆f

ε (eqs. (2.24) and (2.26)), by the one-flavour approximation eq. (2.22) and by

the Boltzmann equation (2.21) without the off-diagonal elements of A-matrix (corresponding to

y
(0)
∆f

), respectively. In the right figures, red, green and blue lines respectively show the y∆e
, y∆µ

and y∆τ
, and the solid and broken lines correspond to the full solution of eq. (2.21) and eqs. (2.24)

and (2.26), respectively.
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2.4 Fixed point

From eq. (2.21), one can obtain a coupled equations for y∆f
/y∆τ (f = e, µ) as

d

dz′

(

y∆f

y∆τ

)

=
∑

f ′=e,µ

m̃τ
1

m∗

[

m̃f
1

m̃τ
1

Aff ′ − Aτf

(

y∆f

y∆τ

)

]

(

y∆f ′

y∆τ

)

. (2.27)

This couple of equations have fixed points in the space of (y∆e/y∆τ , y∆µ/y∆τ ), which is

determined by solving the equations

∑

f ′=e,µ,τ

[

m̃f
1

m̃τ
1

Aff ′ − Aτf ′

(

y∆f

y∆τ

)

]

(

y∆f ′

y∆τ

)

= 0 . (2.28)

Once the flow of the solution reaches close to a fixed point at z′ = z′fp, the set of ratios

(y∆e/y∆τ , y∆µ/y∆τ ) becomes invariant and the Boltzmann equations can be rewritten as

dy∆f

dz′
= −m̃fp

1

m∗
y∆f

, z′ ≥ z′fp . (2.29)

This means that the asymmetries of the all flavor are washed out with the universal washout

mass parameter m̃fp
1 which corresponds to one of the eigenvalues of matrix Bff ′ ≡ m̃f

1Aff ′ .

There are three possible points in the case of three effective flavor numbers. However two

of them are unstable fixed points and only one point is attractive. The attractive one

most likely corresponds to the smallest eigenvalue which is smaller than the smallest m̃f
1 .

Around the attractive fixed point, the asymmetry in the flavor with the smallest washout

mass parameter, y∆f1
dominates the total asymmetry. This can be understood as follows.

The asymmetry in the flavor with larger washout mass parameter, y∆f2
decrease more

quickly as discussed in the case (2b) in the section 2.3. When y∆f2
becomes the order of

Af2f1
y∆f1

, y∆f2
evolves similar to y∆f1

because the transportation from y∆f1
becomes to

control the evolution. Then the washout of y∆f1
becomes weaker due to the transportation

from y∆f2
.

When the initial condition is too far from the fixed point and m̃1 ≪ m∗, the washout

term decouples from the system before the solution flows into the fixed point.4

One can see similar phenomena also in the case where only N1 decay produces the

asymmetries and they are washed out by the N1 (inverse) decay, although, in this case, it

seems difficult to get the large enhancement shown in the case (2b).

In fact the effect of off-diagonal elements of A-matrix in such a case was discussed in

ref. [10] and the authors reached the conclusion that the total asymmetry got modified by

only a few percent due to the effect, except for the case where the individual contributions

cancel out each other to make such a tiny modification important. It was claimed there,

however, that the individual asymmetry, y∆f
, especially the sub-dominant ones, were sen-

sitive to the effect. This is understood as the conversions from the dominant one, even

though suppressed by the small off-diagonal entries, are able to be much larger than the

generations by the sub-dominant ones itself.

4Notice that the z′ takes the value in the range of 0 ≤ z′
≤ 3π/8 corresponding to 0 ≤ z ≤ ∞.
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3. Asymmetries by the second lightest RHN decay

In this section, we investigate the possibility that the initial asymmetries are generated via

the second lightest RHN decay.

For simplicity, we restrict ourselves to the case that the mass of the second lightest

RHN is larger than 1012GeV. This case is qualitatively discussed in ref. [9]. For this mass

range, the fast interactions that are in the equilibrium when the RHN decays are only the

interactions mediated by the gauge and the top Yukawa coupling and the QCD sphalerons.

This means that the fast interactions can not distinguish all the generations of the lepton

doublets, and thus two liner combinations of the three doublets that do not interact with

the RHN are never produced. Namely, only l‖ ∝ Yτ2lτ +Yµ2lµ +Ye2le are produced. Then,

the relevant Boltzmann equations are for one flavor system, which is given by eqs. (2.9)

and (2.10) by replacing all the index 1 to 2 (including z → M2/T ) and suppressing the

flavor indexes. With the definitions given in the section 2.2, we have

dYN2

dz
= −m̃2

m∗
z
K1(z)

K2(z)

(

YN2
− Y eq

N2

)

(3.1)

dy∆

dz
= −ǫ2

m̃2

m∗
z
K1(z)

K2(z)

(

YN2
− Y eq

N2

)

− z3

4
K1(z)

m̃2

m∗
Ay∆. (3.2)

The A-factor for this case is calculated in a similar way to the discussion in the section 2.2

as

A = 2Cl +
3

2
Ch =

67

46
(3.3)

It is possible, of course, that we solve these set of equations numerically to evaluate the

B − L asymmetry produced by the decay of the second lightest RHN. In this article,

however, we use the following approximation formula proposed in ref. [19], which includes

the effects of the scatterings, to evaluate the “baryon asymmetry”:

yB ∼ − 12

37geff
∗

ǫ2η (Am̃2) (3.4)

with

η(x) =

(

( x

8.25meV

)−1
+

(

0.2meV

x

)−1.16
)−1

. (3.5)

In any case, these equations are controlled by the parameters m̃2 and ǫ2 which are

determined by the mass spectrum of the RHN Mi and the neutrino Yukawa coupling Yfi.

To be more concrete, they are respectively given by sums of (2.8) and

ǫf
2 =

1

8π

1

(Y †Y )22
Im

∑

i6=2

Y ∗
f2Yfi

(

(

Y †Y
)

2i
f

(

M2
i

M2
2

)

+
(

Y †Y
)

i2
g

(

M2
i

M2
2

))

. (3.6)

Here both the diagrams of the vertex correction and of the self-energy correction are im-

plemented in each function as

f(x) = −
√

x

x − 1
+

√
x

(

1 − (1 + x) ln

(

1 + x

x

))

, (3.7)

g(x) = − 1

x − 1
. (3.8)
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In this way, fixing Mi and Yfi, all the parameters in the Boltzmann equations are deter-

mined, and we can calculate the B − L asymmetry y∆ just after the second lightest RHN

decouples. This asymmetry is washed out when the lightest RHN starts decaying. In this

period, the τ and µ Yukawa couplings enter into the equilibrium, and thus the fast inter-

actions distinguish all the three flavors. Therefore, we should divide y∆ into y∆τ , y∆µ and

y∆e , which follow the relation y∆τ : y∆µ : y∆e = m̃τ
2 : m̃µ

2 : m̃e
2 according to the probabilistic

interpretation. This set of asymmetries y∆f
, (f = e, µ, τ) gives the initial condition of the

analysis given in the section 2.3.

The neutrino Yukawa couplings Y should be related to the low energy neutrino pa-

rameters through the seesaw relation, eq. (2.2). In order to represent the solution of this

relation, we adopt the following famous parameterization [20],

Yfi =
∑

j

(U∗)fj

√
mjRji

√

Mi/v. (3.9)

Here U is written as the product of a CKM-like mixing matrix V which includes three

mixing angles and one CP phase5 and a phase matrix with two Majorana phases P =

diag (1, exp (iα21/2) , exp (iα31/2)): U = V P and R is a complex orthogonal matrix which

can be decomposed as R = eiω23λ7eiω13λ5eiω12λ2 where λi are Gell-Mann matrices and ωij

are complex parameters. For simplicity, in this article, we use the following set of the pa-

rameters for the light neutrino sector as mi = {0, 9, 50}meV,
{

s122, s232, s13, δ, α21 , α31

}

=

{0.3, 0.5, 0, 0, 0, 0} for the PMNS matrix, and Majorana masses Mi =
{

107, 1013, 1014
}

GeV

for the RHN.

As representative examples, let us consider the following sets:

(I) : {ω12, ω23, ω13} = {30◦, i5◦,−1◦}
(IIa) : {ω12, ω23, ω13} = {−88◦, (60 + i3)◦, 3◦} (3.10)

(IIb) : {ω12, ω23, ω13} = {(−85 + i4)◦, (50 + i20)◦,−5.5◦}

For instance, for the example (I), we find

m̃ =







0.68 2.04 0.02

0.71 2.66 25.2

0.98 2.39 25.2






meV, ǫ =







10−7 −0.27 −0.02

10−4 −95.0 11.57

10−4 84.3 −11.28






× 10−6. (3.11)

These show {m̃e
1, m̃

µ
1 , m̃τ

1} = {0.68, 0.71, 0.98}meV . m∗, and {ǫe
1, ǫ

µ
1 , ǫτ

1} =
{

10−13, 10−11, 10−11
}

are negligibly small. Thus, this is an example of the case (1) in

the section 2.3. Using the approximation (3.4), we see the “baryon asymmetry” generated

by the N2 decay is y0
B = 3.36 × 10−10. When the temperature decrease to around M1,

N1 starts decaying, and the asymmetry is washed out in the way investigated in the last

section. As mentioned above, in this period, the fast interactions distinguish all the fla-

vor, and the asymmetry should be divided as
{

y0
Be

, y0
Bµ

, y0
Bτ

}

= {0.97, 1.26, 1.13}×10−10.

After the washout, a total asymmetry yB = 1.26 × 10−10 remains.

In a similar way, (IIa) and (IIb) are examples of the cases (2a) and (2b), respectively.

Their results are listed in the table 3.

5As a parametrization of V , we adopt the Chau-Keung parametrization (PDG parametrization) [21].
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(I) (IIa) (IIb)

m̃ (meV)







0.68 2.04 0.02

0.71 2.66 25.2

0.98 2.39 25.2













0.68 0.01 2.03

12.0 0.01 16.3

27.3 0.02 1.00













1.46 10−5 1.91

10.43 0.421 24.26

27.91 0.428 6.95







ǫ (10−6)







10−7 −0.27 −0.02

10−4 −95.0 11.57

10−4 84.3 −11.28













10−6 −8.97 0.01

10−5 −31.73 0.02

10−5 −5.02 −0.02













10−6 −0.52 10−3

10−4 341 −2.70

10−4 185 0.335







y0
B (10−10) {0.97, 1.26, 1.13} {2.53, 2.09, 4.28} −{0.017, 521, 530}

yB (10−10) 1.26 1.02 2.00

Table 1: Results of m̃, ǫ, y0
B and yB for the three examples in (3.10).

4. Summary and discussions

In this article, we investigate the washout effect due to the N1 (inverse) decay, assuming

non-vanishing initial lepton asymmetry and negligible lepton asymmetry production in N1

decay. We show that there is a novel parameter region in addition to those studied in

refs. [6, 9]. There, off-diagonal elements of the A-matrix, which are often omitted, play a

critical role. This region is where some of m̃f
1 is comparable to or smaller than m∗, the

others are larger than it, and the initial asymmetries on the flavors with small m̃f
1 are tiny.

In this case, if we would omit the off diagonal elements as usual, any initial asymmetries

on the flavors with large m̃f
1 were strongly washed out. In fact, the off diagonal elements

transform the asymmetries from those with large m̃f
1 to those with small ones. Once

transformed, such asymmetries are weakly washed out, and thus a sizable total asymmetry

may survive.

For completeness, we examine the possibility that the initial asymmetry is generated

by the N2 decay within the thermal leptogenesis scenario. We show a concrete example for

each class discussed in the above analysis.

Finally, let us make a comment on an ambiguity of the Boltzmann equations, especially

on the factor in front of yh in eq. (2.10). As briefly discussed below the equation, an

approximation is used in the derivation of the Boltzmann equations (2.4), (2.5), and it

brings the ambiguity. Because the contribution of this term (yh) is relatively small, as seen

from (2.17) and (2.18), this ambiguity does not affect results so much, O (10%). In the

case (2b), however, the off diagonal element of A-matrix, which is of the same order as the

yh contribution, is critical. In addition, a cancellation occurs between yh contribution and

that of yl in the off diagonal element when the factor in front of yh is around 1/4. Thus,

the result is largely changed due to the ambiguity. In fact, if we take a factor 1/2 instead

of 3/4 as a possible choice, the final baryon asymmetry is reduced to yB = 0.83 × 10−10

with the same parameters as (IIb) in (3.10). Thus, it is important to make a closer look on

the Boltzmann equations before discussing this novel effect quantitatively.
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